

News, Views, Tips, Forums, Jobs, Resources, and More!

hp Tru64 Performance

Presented by Jamie Bridge

www.parsec.com | 888-4-PARSEC

Introduction

Operating system performance is a diverse, sometimes multifaceted issue; in other words, issues related to OS performance may not lie in one particular area. **Tru64 UNIX** is a good example of an OS that displays this attribute; not only does it have an **extensive suite of kernel subsystem attributes** that can be tuned and altered for a variety of purposes, but the various Alpha hardware architectures that Tru64 UNIX runs on can sometimes help or perhaps even hinder performance as well.

This webinar will discuss Tru64 UNIX performance and some recommended steps to take in order to identify, isolate and remedy certain kinds of performance problems. We will also look at some of the performance analysis tools available for the Tru64 UNIX operating system, and how to get the most out of them for whatever particular performance issue is being dealt with.

Common Concerns

Some common areas of concern for Tru64 UNIX (not all of which will be discussed in the next hour):

- **3rd Party Application performance/responsiveness** (Oracle, Sybase, Apache, etc.)
- Operating System performance/responsiveness (NFS, cron, AdvFS, process utilization, etc.)
- Layered Product performance/responsiveness (TruCluster, Webes, Java VM, Insight Manager, etc.)
- Hardware component performance/responsiveness (disk i/o, tape i/o, host bus adapter throughput, etc.)

Performance Issues

The performance areas to be discussed in the next hour are as follows:

- Identifying & isolating OS performance issues
- Kernel subsystem performance/responsiveness
- Isolating file-system component issues (NFS, AdvFS)

Common Performance Scenarios

Common performance scenarios:

- System performance is "slow" overall
- 3rd Party or Layered Product App's performing slowly
- Certain Tru64 UNIX commands not executing quickly
- Overall OS functionality is hindered (daemons not running, poor application response, etc.)
- File-system performance issues (data not accessible, slow i/o rates, hardware-induced issues, etc.)

Addressing System Performance

Questions to ask regarding system performance:

- What exactly about the system is "slow"?
- Is this a system-wide problem or an isolated problem?
- What is the resource load on the system?
- When did the performance degradation start?
- Is it a consistent problem, or does it only occur at a certain time?
- What events (if any) led up to the performance problem?
- What has been done to fix the performance problem?

Virtual Memory

Virtual Memory: A means of extending the capabilities of physical memory. Tru64 UNIX uses a combination of physical memory and disk space to create virtual memory; this allows for the creation of much larger process regions, as virtual memory can support more processes than physical memory alone. Knowing how virtual memory is being utilized can help isolate a system performance issue.

Virtual Memory Page: The basic unit of physical and virtual memory (1 page=8192 bytes). Virtual memory tries to keep recently referenced virtual pages for a process in physical memory. When a process makes reference to virtual pages, they are brought into physical memory from their storage locations on disk. Keeping processes as memory resident as possible helps achieve a higher level of system performance.

Use the "**vmstat**" command to get an idea of the virtual memory resource load on the system in question.

vmstat

Example output from "vmstat":

root@marquis in / --> vmstat 1 5 (1=seconds; 5=lines of output)

Virtual Memory Statistics: (pagesize = 8192) intr procs memory pages cpu r w u act free wire fault cow zero react pin pout in sy cs us sy id 3 212 38 17K 6590 5361 427K 87K 149K 735 98K 37 10 54 95 0 0 100 3 212 38 17K 6588 5361 3 15 23 0 29 0 5 77 84 0 1 99 3 212 38 17K 6588 5361 0 0 0 0 0 3 97 86 0 0 100 0 3 212 38 17K 6588 5361 0 0 0 0 0 0 3 40 80 0 0 100 3 212 38 17K 6588 5361 0 0 0 0 0 0 9 40 105 0 0 100

Fields from "vmstat" output:

Process information:

- r Number of threads that are running or are runnable.
- w Number of threads waiting interruptibly.
- u Number of threads waiting uninterruptibly.

Fields from "vmstat" output (cont.):

Virtual memory information:

act

Total number of pages on the active list, the inactive list (pages that are allocated but are most likely to be used for paging), and UBC least recently used (LRU) list.

free

Total number of pages that are clean and available for use.

wire

Total number of pages that are currently in use and cannot be used for paging (not a real list).

fault

Number of address translation faults that have occurred.

COW

Number of copy-on-write page faults, which occur if the requested page is shared by a parent process and one or more child processes (using the fork function) and if one of the processes needs to modify the page. In this case, VM loads a new address into the translation buffer and copies the contents of the requested page into the new address for modification by the process.

Fields from "vmstat" output (cont.):

Virtual memory information (cont.):

zero

Number of zero-filled-on-demand page faults, which occur if VM cannot find the page in the internal data structures and if the requested page is new and has never been referenced. In this case, VM initializes a physical page (the contents of the page are zeroed out) and loads the address into the page table.

react

Number of pages that have been faulted while on the inactive list.

pin

Number of requests for pages from a pager.

pout

Number of pages that have been paged out.

Fields from "vmstat" output (cont.):

Interrupt information:

- in Number of nonclock device interrupts per second.
- sy Number of system calls called per second.
- cs Number of task and thread context switches per second.

CPU information:

- us Percentage of user time for normal and priority processes.
- sy Percentage of system time.
- id Percentage of idle time.

iowait

Percentage of iowait. If the **-w** option is not specified, the iowait time is included in the id statistic.

vmstat Examples

- Specify "vmstat -f" to display fork statistics only.
- Specify "vmstat -s" for a single display of accumulated statistics, as well as page size.

Examples:

#vmstat -f

Fork statistics: 12639 forks 1595 vforks

#vmstat -s

Virtual Memory Statistics: (pagesize = 8192) 4010 active pages 7019 inactive pages 39617 free pages 10505 wired pages 1888495 virtual memory page faults 313876 copy-on-write page faults 953390 zero fill page faults 388 reattaches from reclaim list 318189 pages paged in 0 pages paged out 150950465 task and thread context switches 4618056 device interrupts 1060849232 system calls

vmstat Procedures

Use the "–P" switch to vmstat to get virtual and physical memory utilization information:

root@marquis in / --> vmstat -P

.

Total Physical Memory = 256.00 M = 32768 pages Physical Memory Clusters:

 start_pfn
 end_pfn
 type
 size_pages / size_bytes

 0
 256
 pal
 256 / 2.00M

 256
 32663
 os
 32407 / 253.18M

 32663
 32768
 pal
 105 / 840.00k

Understanding Swap Space

Swap space: The region on disk that houses modified virtual memory **(8K)** pages. Modified virtual pages can be moved to swap space if the physical pages (pages in physical memory) that contain the virtual pages are needed by either a newly referenced virtual page or by a page with a higher priority. **Tru64 UNIX** uses 2 means of moving virtual pages between physical memory and disk:

Paging: Moves individual virtual pages between disk and physical memory.

Swapping: Moves large number of virtual pages (i.e. pages that are associated with a particular process or group of processes) between physical memory and disk.

Paging Types

Types of paging:

page-in: If a process references a virtual page that is not in physical memory, Tru64 UNIX reads a copy of the virtual page from its location on **disk** or **swap space** into physical memory.

page-out: If a physical page is needed to hold a newly-referenced virtual page or a page with a higher priority, Tru64 UNIX writes a modified virtual page/group of pages that has not been recently referenced to **swap space**.

page-fault: If a requested address for a page is not active in the page table, the virtual memory (**vm**) subsystem locates the page and performs a virtual-to-physical address translation in the page table.

The rate of page-ins and page-outs on a system may provide evidence of a performance issue (if one exists) and can be monitored with the "**vmstat**" command.

Swap Modes

Swap modes:

Immediate (eager) mode: Each modifiable virtual page is assigned a page of swap space when created.

Deferred (lazy) mode: Swap space is not allocated until the system needs to write a modified virtual page to swap space.

The Tru64 UNIX parameter that governs which swap algorithm is used is "**vm: vm_swap_eager**":

```
--> sysconfig -q vm vm_swap_eager
vm:
vm_swap_eager = 1 (1=on, 0=off)
```


Swap Space Example

Some reasons for adding additional swap space:

.

- Adding or upgrading a memory-intensive application(s)
- System is becoming memory-restricted (per vmstat)
- Tru64 UNIX presents warnings to syslogd about swap space
- Comply with the "**swap=2 to 3x physmem**" rule for moderate memory systems

Real world example of when one might want to add swap:

You may see the following message in /var/adm/messages:

Jun 17 07:41:08 marquis vmunix: swap space below 10 percent free Jun 19 05:55:59 marquis vmunix: swap space below 10 percent free Jun 21 06:58:51 marquis vmunix: swap space below 10 percent free

Resolution:

1. Find out what disks you can use for additional swap:

#readlabelsv5 (script to quickly identify what disks are not in use)

Total disks to be read: 7

dsk0: 4 partitions not in use.
dsk1: 8 partitions not in use. <--Not in use by a filesystem
dsk4: 7 partitions not in use.
dsk5: 7 partitions not in use.
dsk6: 8 partitions not in use. <--Not in use by a filesystem
dsk3: 8 partitions not in use. <--Not in use by a filesystem
dsk2: 7 partitions not in use.

2. Check the disklabel:

#disklabel -r dsk1

.

8 partitions:							
#	size	offset fstype fsize bsize cpg # ~Cyl values					
a:	131072	0 unused 0 0 # 0 - 57*					
b:	262144	131072 unused 0 0 # 57*- 173*					
C:	8380080	0 unused # 0 - 3707					
d:	0	0 unused 0 0 # 0-0					
e:	0	0 unused 0 0 # 0-0					
f:	0	0 unused 0 0 # 0-0					
g:	3993432	393216 unused 0 0 # 173*- 1940*					
h:	3993432	4386648 unused 0 0 # 1940*- 3707	•				

3. Mark the "c" partition (whole disk) as used for swap:

#disklabel -sF dsk1c swap

4. Add this to the /etc/sysconfigtab file:

swapdevice = /dev/disk/dsk0b,/dev/disk/dsk1c

5. Turn on the paging files in multi-user mode:

#swapon -a

.

<---

6. Confirm that the new swap partition is being used:

#swapon -s

Swap partition /dev/disk/dsk0b (default swap):							
Allocated space:	49152 pages (384MB)						
In-use space:	844 pages(1%)						
Free space:	48308 pages (98%)						

Swap partition /dev/disk/dsk1c:

Allocated space:	523755 pages (4.00GB)
In-use space:	1 pages (0%)
Free space:	523754 pages (99%)

Total swap allocation:

Allocated space: In-use space: Available space:

Reserved space: 15566 pages (2%) 845 pages (0%) 557341 pages (97%)

572907 pages (4.37GB) <---

In order for these settings to survive a reboot, do the following:

```
    #sysconfig -Q vm swapdevice
vm:
swapdevice - type=STRING op=CQ min_len=0 max_len=1024
op=CQ: If no "R" is present, then the parameter is not configurable at run-time.
```

2. #sysconfig -q vm >stanza-file

3. #vi stanza-file

•••••

```
swapdevice = /dev/disk/dsk0b,/dev/disk/dsk1c
(save work in vi)
```

4.

Merge the changes from the stanza-file into the **vm** kernel subsystem (discussed later): #sysconfigdb -m -f stanza-file vm

As a result, the changes made will persist across reboots.

How do I determine where the slowdown is occuring?

What tend to be the most common areas here are with regards to **commands** and **applications**. Commands that normally return quickly no longer do so; applications that complete execution in a certain time interval now take longer to complete.

If the System Administrator documents how the system performs under normal circumstances and has some understanding of how commands and applications interact with Tru64 UNIX, then the OS tools available will go that much further in isolating the problem.

Some commands and files to use to help isolate slow system performance:

- 1. **vmstat** (discussed earlier; details virtual memory performance statistics)
- 2. **iostat** (details disk i/o performance statistics)
- **3. netstat** (details network performance statistics)
- 4. **ps** (details information about system processes)
- 5. **sysconfig** (means of viewing and modifying kernel subsystem parameters)
- 6. **nfsstat** (details Network File System performance statistics)
- 7. advfsstat (details Advanced File System performance statistics)
- 8. volstat (details Logical Storage Manager (LSM) performance statistics)
- **9. syslogd** (system event logging daemon; ref. the /var/adm/syslog.dated directory)
- **10.** evmd (system event logging daemon; ref. the /var/evm/evmlog directory)
- **11. cpustat** (cpu performance statistics; function of the "kdbx" kernel debugger)
- **12. df** (details mounted filesystem statistics; starting point for further FS analysis)
- **13. du** (details disk usage statistics)
- **14. dumpsys** (means of generating a system/memory dump on a running system)
- **15. sys_check** (data-gathering tool to help provide more detailed configuration information)
- **16. collect** (statistical reporting and gathering tool)
- **17. spike** (performs code optimization after linking a program)
- 18. Force a system crash in order to capture the state of the system while it is running slow

How can I isolate the problem?

Questions to help narrow down the scope of the issue:

- How long has the problem been around?
- How many users are seeing the problem?
- Are all aspects of the system impacted by the problem?
- Does it occur at a specific time, or all of the time?
- What (if any) changes were made on the system?
- What analysis has been done to date?

How do I determine the resource load on the system?

Use "iostat" to get disk performance statistics:

root	root@marquis in /> iostat dsk4 1 5 (5 lines of output in 1-second intervals)								
tty	y	floppy	0	dsk	4		C	pu	
tin t	out	bps	tps	bps	tp	SC	US	s ni sy	id
0	2	0	0	9	0	0	0	0100	
0	52	0	0	0	0	0	0	0100	
0	52	0	0	0	0	0	0	0100	
0	52	0	0	0	0	0	0	0100	
0	52	0	0	0	0	0	0	0100	
root	@.m	arquis	in /	> iosta	at c	dsk	5 ⁻	15	
tty	root@marquis in /> iostat dsk5 1 5 tty floppy0 dsk5 cpu tin tout bos tos us ni sv id								

· · · · ·	,		.	0.011	·		
tin t	out	bps	tps	bps	t	os	us ni sy id
0	2	0	0	1	0	0	0 0100
0	52	0	0	0	0	0	0 0100
0	52	0	0	0	0	0	0 0100
0	52	0	0	0	0	0	0 0100
0	52	0	0	0	0	0	0 0100

Use "netstat" to get network performance statistics:

root@marquis in / --> netstat Active Internet connections Proto Recv-Q Send-Q Local Address Foreign Address (state) tcp 0 0 marquis.parsec.com.7920 marquis.parsec.com.1032 ESTABLISHED tcp 0 0 marquis.parsec.com.1032 marquis.parsec.com.7920 ESTABLISHED tcp 0 2 marquis.parsec.com.telnet parsec-vshh7yzx.parsec.com.1765 ESTABLISHED

When used without options, the **netstat** command displays a list of active sockets for each protocol. The default display shows the following items:

- + Local and remote addresses
- + Send and receive queue sizes (in bytes)
- + Protocol
- + State

.

Address formats are of the form host.port or network.port if a socket's address specifies a network but no specific host address. The host and network address are displayed symbolically unless -n is specified.

Use "netstat –l ifname" to get statistics on a specific network interface:

root@marquis in / --> netstat -l nr0 1 (1=1 second intervals)

input	(nr0)	outp	out		input	t (Tota	al)	outp	out			
packets	errs	pack	kets	errs	colls	packe	ets e	rrs	pack	ets	errs colls	S
5047	0	682	2	0	0 1	5277	0	21	68	0	44	
4	0	1	0	0	10	0	2	0	0			
3	0	1	0	0	8	0	2	0	0			
1	0	1	0	0	2	0	2	0	0			
1	0	1	0	0	2	0	2	0	0			
2	0	1	0	0	5	0	2	0	0			
4	0	1	0	0	11	0	4	0	0			
3	0	1	0	0	8	0	2	0	0			
2	0	1	0	0	5	0	2	0	0			
1	0	1	0	0	2	0	2	0	0			

Use "**netstat –I ifname –s**" to display additional (data-link layer) stats for a specified network interface:

root@marquis in / --> netstat -I nr0 -s

nr0 Ethernet counters at Thu Jun 23 11:09:25 2005

5326 seconds since last zeroed 604404 bytes received 155112 bytes sent 6482 data blocks received 1023 data blocks sent 515096 multicast bytes received 5351 multicast blocks received 11583 multicast blocks sent 244 multicast blocks sent 1 blocks sent, initially deferred 20 blocks sent, single collision 20 blocks sent, multiple collisions 0 send failures 0 receive failures

Use the "ps" command to gather detailed information about system processes:

root@marquis in / --> ps auxw | more

USER	PID %CPU %MEM VSZ RSS TTY S STARTED TIME COMM	AND
root	1518 0.0 0.0 2.64M 88K pts/0 R + 12:08:45 0:00.00 –ksh (ksh)	
root	1517 0.0 1.6 6.45M 4.0M pts/0 R + 12:08:45 0:00.05 ps auxw	
root	1496 0.0 0.1 2.64M 344K pts/0 S 12:08:34 0:00.03 –ksh (ksh)	
jbridge	1492 0.0 0.2 2.82M 432K pts/1 S + 12:08:01 0:00.04 more messages	\$
jbridge	1477 0.0 0.1 2.61M 320K pts/1 I 12:06:12 0:00.04 –ksh (ksh)	
root	1475 0.0 0.3 10.7M 872K ?? S 12:06:01 0:00.12 /usr/sbin/sshd2	

Use the "**ps**" command to gather detailed information about system processes (cont.):

#ps -Amo pid,ppid,rssize,comm,state,cputime,pcpu,psr | more

PID	PPID RSS COMMAND	S	S TIME %CPU PSR
0	0 18M kernel idle	R <	0:11.83 0.0 ~0
1	0 96K init	IL	0:00.10 0.0 0
3	1 1.0M kloadsrv	I	0:00.07 0.0 0
5	1 352K hotswapd	S	0:00.00 0.0 0
54	1 328K esmd		0:00.03 0.0 0
65	1 112K update	S	0:00.00 0.0 0
190	1 1.0M evmd		0:00.46 0.0 0
227	190 456K evmlogge	er I	0:00.22 0.0 0
228	190 360K evmchmg	gr I	0:00.03 0.0 0
355	1 176K niffd	I	0:00.28 0.0 0

Use the "**cpustat**" function of the **kdbx** debugger to generate cpu usage statistics (must be the root user to use this command):

root@marquis in / --> echo "cpustat -update 1" | kdbx -k /vmunix (report statistics every second)

Cpu	User (%)	Nice (%) System (%) Ic	dle (%) Wait (%)

====	= ======	==		= ======		= ===========
0	0.24	0.13	0.33	99.08	0.23	
0	41.74	0.00	58.26	0.00	0.00	
0	40.36	0.00	59.64	0.00	0.00	
0	39.31	0.00	60.69	0.00	0.00	
0	38.32	0.00	61.68	0.00	0.00	
0	38.19	0.00	61.81	0.00	0.00	

(<ctrl>C'd out after 6 reports)

pid 1931 exited with signal SIGINT

root@marquis in / -->

Kernel Tuning

While a number of Tru64 UNIX commands can report back on system resource load, the **Tru64 UNIX kernel subsystem infrastructure** can actually control how the system handles this load. The **sysconfig** command is one way to increase or decrease the value of kernel subsystem parameters, should the situation call for it.

There are **over 80 kernel subsystems in the Tru64 UNIX (v5.1B) Operating System**. Not all of these subsystems need or require administrator interaction, though; of the 80+ subsystems in Tru64 UNIX (V5.1B), **administrators typically only deal with between 5 to 10 of them** when performing day-to-day administration tasks.

When discussing Tru64 UNIX performance, at some point the topic of **kernel tuning** more than likely will come up. What follows will detail some of the more common areas of kernel tuning that can have a noticeable impact on Tru64 UNIX performance.

Kernel Tuning

Why tune kernel subsystems?

- Can help the system perform faster/more efficiently
- Can help applications perform faster/more efficiently
- Resource limits have been exceeded (via syslogd)
- Technical documentation says to tune
- The "sys_check" utility (discussed later) says to tune
- System configuration (HW/SW) has changed
- System workload has changed

Kernel Tuning

Some of the more common kernel subsystems that may need to be tuned on a routine basis:

root@marquis in / --> sysconfig -s | more

generic: loaded and configured inet: loaded and configured ipc: loaded and configured proc: loaded and configured socket: loaded and configured vm: loaded and configured

Kernel Tuning Reference

Reference:

1.

If you ever need to know what tunable parameters exist for a given subsystem, or need/want a general description of what a parameter does, reference the man page for that subsystem as follows: **#man sys_attrs_subsysname**

Example: #man sys_attrs_vm sys_attrs_vm - system attributes for the vm kernel subsystem

2.

Reference the **Tru64 UNIX Tuning Guide** for your operating system version at the following location on the WWW:

http://h30097.www3.hp.com/docs/pub_page/doc_list.html

VM Subsystem

As mentioned before, **virtual memory** is a means of extending the capabilities of **physical memory**. Given the importance of this feature, the "**vm**" subsystem is (arguably) the most frequently altered kernel subsystem.

Here is how to view parameters in the **vm** subsystem (or any subsystem for that matter):

```
--> sysconfig -q vm
vm:
ubc_minpercent = 10
ubc_maxpercent = 100
ubc_borrowpercent = 20
vm_max_wrpgio_kluster = 32768
vm_max_rdpgio_kluster = 16384
```

.

Unified Buffer Cache (UBC)

Unified Buffer Cache (UBC): Means of retaining actual file data (reads and writes from conventional file activity) for faster data retrieval. **UBC** and the **virtual memory subsystem** both share and compete for all of main memory.

ubc_minpercent: Minimum % of physical memory that the UBC can use. Default value: **10** (percent) Minimum value: 0 Maximum value: **100** (percent)

ubc_maxpercent: Maximum % of physical memory that the UBC can use at one time.

Default value: 100 (percent) Minimum value: 0 Maximum value: 100

NOTE RE: ubc_maxpercent (T64 v5.1B): It is recommended that this value be set to a value in the range of 70 to 80 percent. On an overloaded system, values higher than 80 can delay return of excess UBC pages to vm and adversely affect performance.

(Source: "man sys_attrs_vm", T64 v5.1B)

"proc" Subsystem

Another subsystem to keep in mind with regards to enhancing system performance is the "**proc**" subsystem. This subsystem, as the name implies, allows for the efficient management of user and system processes in the Tru64 UNIX Operating System.

The command to view **proc** subsystem parameters is as follows:

--> sysconfig -q proc proc: max_proc_per_user = 256 max_threads_per_user = 1024 per_proc_stack_size = 8388608 max_per_proc_stack_size = 33554432 per_proc_data_size = 134217728 max_per_proc_data_size = 1073741824 max_per_proc_address_space = 4294967296 per_proc_address_space = 4294967296

"maxusers" Parameter

The "maxusers" parameter in the proc subsystem:

Controls the number of simultaneous users that a system can support without straining system resources. System algorithms use the **maxusers** value to size various system data structures and to determine the amount of space allocated to system tables, such as the system process table. In a situation where multiple users are complaining of slow system performance, you may want to consider raising the value of the **maxusers** parameter.

Default value: System dependent Minimum value: 8 (users) Maximum value: 16,384

Increasing the value of the **maxusers** attribute allocates more system resources to the kernel. However, it also increases the amount of physical memory consumed by the kernel. Changing the value of the **maxusers** attribute automatically adjusts the values of other attributes, including the **taskmax**, **threadmax**, and **min_free_vnodes** attributes if you have not explicitly overridden the default values for those attributes.

(Source: "man sys_attrs_proc", T64 v5.1B)

"maxusers" Parameter

A template to follow when considering a change to the **maxusers** parameter:

Value of maxusers
128
256
512
1024
2048
2048

(Source: Tru64 UNIX 5.1B System Configuration and Tuning Manual) (WWW: http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51B_HTML/ARH9GCTE/TITLE.HTM)

"proc" Subsystem

While the **proc** kernel subsystem governs overall system process management, the **limit (csh) and ulimit (ksh)** commands affect the current execution (shell) environment. Once a limit has been decreased using ulimit, only a user with root privileges may increase it.

If you are seeing errors or performance issues that look to be specific to a particular execution environment, use the **ulimit** command to check and set current execution environment settings:

```
root@marquis in / --> ulimit
unlimited
```

root@marguis in / --> ulimit -a (Lists all current resource limits) time(seconds) unlimited file(blocks) unlimited data(kbytes) 131072 stack(kbytes) 8192 memory(kbytes) 238288 coredump(blocks) 0 nofiles(descriptors) 4096 vmemory(kbytes) 4194304

(See "man ulimit" for details on increasing or decreasing these parameters)

Isolating File System Component Issues

Some common file-system components within Tru64 UNIX that can be subject to system performance degradation:

NFS=Network File System; means of sharing files and filesystems across a network. **AdvFS**=Advanced File System; default filesystem for /, /usr and /var in Tru64 UNIX V5.

NFS:

- Shares the Unified Buffer Cache (UBC) with the **vm** subsystem & local filesystems.
- Network-based; NFS performance can suffer in a heavily used network.

AdvFS:

- Very tunable in many ways (de-fragmentation, balancing of data, file-set quotas)
- Very expandable (100 active domains, 250 volumes per domain, unlimited file-sets)
- Performance can suffer if all of this flexibility is not administered efficiently

Isolating File System Component Issues

Some questions to ask regarding NFS performance issues:

- How congested is the network as a whole?
- Are sufficient resources being allocated to NFS?
- Is the problem on the NFS client or server?

Some questions to ask regarding AdvFS performance issues:

- How many domains and file-sets constitute the file-system?
- What are the I/O statistics reporting?
- How fragmented is the file-system in question?
- Is the file-system made up of one or more volumes?

NFS Performance Issues

Some ways to isolate NFS performance issues:

- Use the "netstat" command to identify network performance bottlenecks
- Use the "nfsstat" command to get NFS performance statistics
- Use the "nfswatch" command to monitor NFS server activity (requires additional kernel configuration; i.e. "options PACKETFILTER" in /sys/conf/HOSTNAME)
- Monitor syslogd files for errors/problems (/var/adm/syslog.dated, /var/adm/messages)

Examples of NFS-related errors in /var/adm/messages:

Jun 17 21:27:34 beagle vmunix: NFS3 server marquis.parsec.com not responding still trying Jun 17 21:27:34 beagle vmunix: NFS3 server marquis.parsec.com ok Jun 18 23:51:42 beagle vmunix: fcntl: Local lock-manager not registered Jun 18 23:51:42 beagle vmunix: fcntl: Local lock-manager not registered Jun 18 23:57:03 beagle vmunix: fcntl: Local lock-manager not registered

NOTE: NFS performance can suffer if file-locking is in use on an NFS file. The locks prevent the file from being cached on the client.

"nfsstat" Command

Example of the "nfsstat" command:

root@marquis in / --> nfsstat

Server rpc: tcp: calls badcalls nullrecv badlen xdrcall creates 0 0 0 0 0 64 udp: calls badcalls nullrecv badlen xdrcall 3770 0 0 0 0

Server nfs: calls badcalls badprog badproc badvers badargs 3770 0 0 0 0 0 unprivport weakauth 0 0

(See "man nfsstat" for more details)

"nfswatch" Command

Example of the "nfswatch" command:

root@beagle in /> nfswatch NFSWATCH Version 4.1 of 1 December 1993 Watch packets from all hosts to beagle.parsec.com on Ethernet interface tu0; log to "nfswatch.log" (logging off); snapshots to "nfswatch.snap"; cycle time 10 seconds
beagle.parsec.com Sun Jun 26 23:23:02 2005 Elapsed time: 00:00:10
Interval packets: 10 (network) 10 (to host) 0 (dropped)
Total packets: 10 (network) 10 (to host) 0 (dropped)
Monitoring packets from interface tu0
int pct total int pct total
ND Read 0 0% 0 TCP Packets 0 0% 0
ND Write 0 0% 0 UDP Packets 2 20% 2
NFS Read 0 0% 0 ICMP Packets 0 0% 0
NFS Write 0 0% 0 Routing Control 0 0% 0
NFS Mount 0 0% 0 Address Resolution 1 10% 1
YP/NIS/NIS+ 0 0% 0 Reverse Addr Resol 0 0% 0
RPC Authorization 0 0% 0 Ethernet/FDDI Bdcst 9 90% 9
Other RPC Packets 0 0% 0 Other Packets 7 70% 7
4 file systems
File Sys int pct total File Sys int pct total
/ 0 0% 0
/tmp 0 0% 0
/usr 0 0% 0
/var 0 0% 0

NFS Performance

Options in "mount" that can affect NFS (client) performance:

root@beagle in /var/adm --> mount -I -t nfs

/var/cust_files@marquis.parsec.com on /var/custl_files type nfs (v3, rw, exec, suid, dev, nosync, noquota, grpid, atimes, udp, hard, intr, ac, cto, wsize=49152, rsize=49152, timeo=11, maxtimo=20, retrans=4, acregmin=3, acregmax=60, acdirmin=30, acdirmax=60)

- **rsize**=n (Sets the read buffer size to n bytes.)
- **wsize**=n (Sets the write buffer size to n bytes.)
- timeo=n (Sets the initial NFS timeout period for UDP mounts to n tenths of a second.)
- **maxtimo**=n (Sets the maximum value, in seconds, that is allowed between request
- transmissions. UDP mounts only.)
- **retrans**=n (Sets the number of NFS retransmissions to n.)
- acregmin=n (Holds cached file attributes for at least n seconds.)
- acregmax=n (Holds cached file attributes for no more than n seconds.)
- **acdirmin**=n (Holds cached directory attributes for at least n seconds.)
- acdirmax=n (Holds cached directory attributes for no more than n seconds.)

AdvFS Fragmentation

AdvFS file-system fragmentation:

File fragmentation reduces the read/write performance because more I/O operations are required to access a fragmented file.

The **defragment** utility attempts to reduce fregmentation in a file domain by making files more contiguous. Defragmenting a file domain often makes the free space on a disk more contiguous, resulting in less fragmented file allocations in the future.

To check current fragmentation levels on a domain, run "defragment –vn" against the domain(s) in question.

"defragment" Utility

Example of using the **defragment** command to check fragmentation levels:

root@marquis in / --> defragment -vn crash_domain defragment: Gathering data for domain 'crash_domain' Current domain data: Extents: 205 Files w/extents: 205 Avg exts per file w/exts: 1.00 Aggregate I/O perf: 100% Free space fragments: 27 <100K <1M <10M >10M Free space: 0% 0% 0% 100% Fragments: 0 7 3 17

Extent: A contiguous area of disk space that AdvFS allocates to a file. When storage is added to a file, it is grouped in extents.

"advfsstat" Command

Use the "advfsstat" command to generate AdvFS performance statistics:

root@marquis in / --> advfsstat -i 1 -c 1 crash_domain (1 second increments, 1 iteration)

Domain -1113843636.284579- Stats -													
Deref 2 Refhit			2		Re	fhitwait	0		R_ahead	0			
Unpin 0 Pinhit			0		Pir	nhitwait	0		Pinreads	0			
Lazy 0 Log			0		Blo	ocking	0		Clean	0			
Ubchit 2						Unconsol 0			ConsolAbort 0				
UnpinMeta					eta 0 UnpinFtx 0			UnpinData 0					
DerefMeta 2 DerefFtx 2								DerefDat	a 0				
Disk R	eads	Write	es Rg	lobs	AveRglob		Wglobs	AveV	Vglob	1			
1 (0	0	0	0	0	0	2	0	0	0	0	0	0

(See "man advfsstat" for definitions of the various fields in this output)

"balance" Command

Use the "**balance**" command to balance the percentage of used space more evenly across multi-volume AdvFS domains:

root@marquis in / --> balance -v crash_domain (-v=verbose) balance: Balancing domain 'crash_domain' balance: Balanced domain 'crash_domain'

root@marquis in / --> showfdmn -k crash_domain

IdDate Created LogPgsVersionDomain Name4263e7b4.000457a3Mon Apr 18 10:00:36 20055124 crash_domain

Vol	1K-Blks	Free	% Used	Cmo	de Rl	olks	Wblks	Vol Name
1L	4190040	3330464	21%	on	256	256	6 /dev/	disk/dsk4c
2	4190040	3435736	18%	on	256	256	6 /dev/	disk/dsk5c

8380080 6766200 19%

----- ------ -----

"migrate" Command

Use the "**migrate**" command to move a file to another volume in the same file domain. Moving a file/files in this manner has two performance advantages:

- Can take advantage of a faster, more robust volume in a file domain.
- By migrating a file/files, discontiguous file extents become more contiguous.

Alternatively, the "vfast" utility (new in Tru64 UNIX Version 5.1B) performs a number of file-system optimization techniques that:

- Reduce file fragmentation
- Equalize the I/O load
- Balance volume free space

(See the man pages for "migrate" and "vfast" for more details)

"collect" Utility

The "**collect**" utility is a robust data collection tool that captures detailed statistics regarding a wide variety of Tru64 UNIX performance categories (process utilization, I/O statistics, virtual memory performance, etc.). You can use the collect utility to record all or select categories about the running system.

Command

Example collect output:

.

.

RECORD 1 (1112914690:52) (Thu Apr 7 16:58:10 2005)

Process Statistics (RSS & VSZ in KBytes)
PID User %CPU RSS VSZ UsrTim SysTim IBk OBk Maj Min
0 root 0.0 43M 1.4G 0.000 0.000 0 0 0 0 kernel idle
1 root 0.0 98K 622K 0.000 0.000 0 0 0 0 init
3 root 0.0 1.0M 1.6M 0.000 0.000 0 0 0 0 kloadsrv

PARSEC Group

"collect" Utility

DISK Statistics #DSK NAME B/T/L R/S RKB/S W/S WKB/S AVS AVW ACTQ WTQ %BSY 0 cdrom0 0/0/0 0 0 0.00 0.00 0.00 0.00 1 dsk0 2/0/0 0 0 0 0.00 0.00 0.00 0.00 2 dsk2 2/1/0 0 0 0 0.00 0.00 0.00 0.00 3 dsk1 2/2/0 0 0 0 0.00 0.00 0.00 0.00
TAPE Statistics #NUM NAME B/T/L R/S RKB/S W/S WKB/S QLEN 0 tape0 2/3/0 0 0 0 0 0
CPU SUMMARY # USER SYS IDLE WAIT INTR SYSC CS RUNQ AVG5 AVG30 AVG60 FORK VFORK 0 0 99 0 2 611 280 0 0.07 0.06 0.03 0.00 0.00 # SINGLE CPU STATISTICS # CPU USER SYS IDLE WAIT 0 0 0 99 0
MEMORY STATISTICS #(< MegaBytes> < Pages/sec>) # Free Swap Act InAc Wire UBC PI PO Zer Re COW SW HIT PP ALL 674 70 236 0 71 172 21 0 93 0 22 0 0 0 0

"collect" Utility

FileSystem Statistics

# FS	Filesystem Ca	Filesystem Capacity							
0	root_domain#root	384	271						
1	/proc 0	0							
2	usr_domain#usr	6191	1250						
3	usr_domain#var	6191	1250						

Network Statistics

#Cnt	Nam	ne	Inpck InErr Outpck OutErr					Col		IKB	OKB %BW
0	lo0	0	0	0	0	0	0	0	0		
1	sl0	0	0	0	0	0	0	0	0		
2	tu0	2	0	0	0	0	0	0	0		
3	tun0	0	0	0	0	0	0	0	0		
4	tun1	0	0	0	0	0	0	0	0		

Message Queue Statistics

ID Key OUID BYTES Cnt SPID RPID STIME RTIME CTIME 0 1099236080 0 0 0 3 788 1112799054 1112799054 1112799 015

TTY Statistics

In Out Can Raw

0 12 0 0

System Tuning/Performance References

Tru64 UNIX System Configuration and Tuning Guide (Tru64 UNIX 5.1B): http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51B_HTML/ARH9GCTE/TITLE.HTM (Also note Part 2, Section 4 regarding "Tuning Oracle version 8.1.7.x/9i" on Tru64 UNIX 5.1B)

Tru64 UNIX System Administration Guide (Tru64 UNIX 5.1B): http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51B_HTML/ARH9FETE/TITLE.HTM

Tru64 UNIX Advanced File System Administration Guide (Tru64 UNIX 5.1B): http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51B_HTML/ARH96DTE/TITLE.HTM

Tru64 UNIX Network Administration (Connections; Tru64 UNIX 5.1B): http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51B_HTML/ARH9CDTE/TITLE.HTM

Tru64 UNIX Network Administration (Services; Tru64 UNIX 5.1B): http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51B_HTML/ARPPCBTE/TITLE.HTM

News, Views, Tips, Forums, Jobs, Resources, and More!

hp Tru64 Performance

Questions?

www.parsec.com | 888-4-PARSEC